32 research outputs found

    Social Status and Badge Design

    Full text link
    Many websites rely on user-generated content to provide value to consumers. These websites typically incentivize participation by awarding users badges based on their contributions. While these badges typically have no explicit value, they act as symbols of social status within a community. In this paper, we consider the design of badge mechanisms for the objective of maximizing the total contributions made to a website. Users exert costly effort to make contributions and, in return, are awarded with badges. A badge is only valued to the extent that it signals social status and thus badge valuations are determined endogenously by the number of users who earn each badge. The goal of this paper is to study the design of optimal and approximately badge mechanisms under these status valuations. We characterize badge mechanisms by whether they use a coarse partitioning scheme, i.e. awarding the same badge to many users, or use a fine partitioning scheme, i.e. awarding a unique badge to most users. We find that the optimal mechanism uses both fine partitioning and coarse partitioning. When status valuations exhibit a decreasing marginal value property, we prove that coarse partitioning is a necessary feature of any approximately optimal mechanism. Conversely, when status valuations exhibit an increasing marginal value property, we prove that fine partitioning is necessary for approximate optimality

    Restricted Strip Covering and the Sensor Cover Problem

    Full text link
    Given a set of objects with durations (jobs) that cover a base region, can we schedule the jobs to maximize the duration the original region remains covered? We call this problem the sensor cover problem. This problem arises in the context of covering a region with sensors. For example, suppose you wish to monitor activity along a fence by sensors placed at various fixed locations. Each sensor has a range and limited battery life. The problem is to schedule when to turn on the sensors so that the fence is fully monitored for as long as possible. This one dimensional problem involves intervals on the real line. Associating a duration to each yields a set of rectangles in space and time, each specified by a pair of fixed horizontal endpoints and a height. The objective is to assign a position to each rectangle to maximize the height at which the spanning interval is fully covered. We call this one dimensional problem restricted strip covering. If we replace the covering constraint by a packing constraint, the problem is identical to dynamic storage allocation, a scheduling problem that is a restricted case of the strip packing problem. We show that the restricted strip covering problem is NP-hard and present an O(log log n)-approximation algorithm. We present better approximations or exact algorithms for some special cases. For the uniform-duration case of restricted strip covering we give a polynomial-time, exact algorithm but prove that the uniform-duration case for higher-dimensional regions is NP-hard. Finally, we consider regions that are arbitrary sets, and we present an O(log n)-approximation algorithm.Comment: 14 pages, 6 figure

    Rating mechanisms for sustainability of crowdsourcing platforms

    Get PDF
    Crowdsourcing leverages the diverse skill sets of large collections of individual contributors to solve problems and execute projects, where contributors may vary significantly in experience, expertise, and interest in completing tasks. Hence, to ensure the satisfaction of its task requesters, most existing crowdsourcing platforms focus primarily on supervising contributors\u27 behavior. This lopsided approach to supervision negatively impacts contributor engagement and platform sustainability

    The psych consult

    No full text

    Winner-Take-All Crowdsourcing Contests with Stochastic Production

    No full text
    We study winner-take-all contests for crowdsourcing procurement in a model of costly effort and stochastic production. The principal announces a prize value P, agents simultaneously select a level of costly effort to exert towards production, yielding stochastic quality results, and then the agent who produces the highest quality good is paid P by the principal. We derive conditions on the probabilistic mapping from effort to quality under which this contest paradigm yields efficient equilibrium outcomes, and demonstrate that the conditions are satisfied in a range of canonical settings
    corecore